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Abstract

An. example of the rigorous solution of a com-
plex region boundary value problem is presented.
The particular problem, the electrostatic capacity
and characteristic impedance of a strip trsnsmis-
aion line, is solved exactly and numerical results
are given for a particular geomticsl configura-
tion.

1. Introduction

A large class of important electromagnetic
boundary value problems requiring the solution of
Laplace$s or Hel.mholtz! equation havs boundaries
whic~h cannot be completely described by constant
coordinate surfaces for the entii-e region under in-
vestigation. Consequently, the usual method of
solring these problems by selecting a coordinate
system which completely describes the boundaries
of the region by constamt coordinate surfaces can-
not be used. Though this simple method of solution
is inapplicable, there exists a systematic proced-
ure for treating complex region boundary value prob-
lems, the so-called series-matching method.

The series-matching procedure of solving com-
plex region boundary vd.ue problems can be divided
into the following four steps:

1. The complex region for which the solution
of Lsplacets or Helmholtzss equations is desired is
dissected into a number of simpler regions whose
boundaries are constant coordinate surfaces. M.gen-
functions expansions of the fields in each of the
simpler regions can then be selected such that they
satisfy the boundary conditions peculiar to each of
the simpler regions.

2. Equations relating the coefficients of the
eigenfunction expansions in each of the eimpler re-
gions are obtained by imposing the continuity re-
quirements of the fields across common boundaries
of the simple~ regions. Operations on these equa-
tions results in the writing of an infinite set of
equations involving only the infinite set of eigen-
functions coefficients for one of the simpler re-
gions.

3. The infinite set of equations are then
solved with a demonstration given to show that the
solution obtained is bounded and the required sol-
ution.

4. Finally, to minimize the labor involvedin
obtaining numerical results, such techniques as an-
alytical continuation snd the use of Kummer~s trans-
format.ion2 are applied to simplify the solution ob-
tained.

I?xamples of essentially the above prQcedure
for the solution of electrostatic problems are
given in the papers of Rigbyand Knight39~. Ap-
plication of the above method to problems involv-
ing the solution of Helmholtzts equation have been
given tyHahn, Whinnery, Jamieson and Robbinss.
However, in these application to cavity arrd wave-
gulde problems, the infinite set of equations ob-
tained were not solved but were approximated by
considering usually only the first four equations
and coefficients of the infinite set and justify-
ing the omission of the rest of the equations by
the numerical smallness of the few calculated co-
efficients. Hahn~a contribution to the series
matching method, however, was in showing that a
considerable simplification in the numerical hand-
ling of the infinite set of continuity equa$ions
results if some newly defined auxiliary fuuctions
we introduced. These auxiliary functions are

used in Kummer transformations of terms appearing
in the matching equations which are themselves
slowly convergent series.

In this paper, a simple elect~ostabi.c problkm
will be solved using the series-.matehing method of
solution so as to completely demonstrate the use-
fulness of this method of solution and t-c clearly
illustrate the above mentioned solution procedure.
since the particular problem considered is useful.
in transmission line applications, the solution
willbe carried to numerical completeness giving
the characteristic impedance of the configuration
when used as a strip transmission line.

2. Formulation of Problem

Let us consider the calculation of the elec-
trostatic capacity per unit length of an infinite
length rectsngularbsr placed between two :lnfiniti~
extent ground planes. A plme cross-section per-
pendicular to the axis of the inner bar is shown
in Fig. 1. The tnner bar at potential V = V. and
the infinite extent ground planes have infhite
conductivity. The regions above, below,and to tho
right end left of the inner conductor ham dielect-
ric constants&l, C2 andC3, respectively.

The boundaries of the inner conductor can not
be described by a single constant coordinate eur-
face. Following step 1 of the procedure outlined
abovej the complex region between the inner bar
and outer plates is dissected into four rectangu-
lar areas, where region (1) is boundby Ixl&#,
a-d~y~ a, region (2)by ~xl 44?, O ~y~~b$ and
region (3) by 1x!> ~, O~y -a. The solution of
Laplacefls equation in the three regions satisfying
*he proper boundary conditions on the constant y
plane~ peculiax to each region can nowbe imnmd-
iatel.y written.
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2A. Solution of Laplacels Equation

The general solution of Laplacels e uation for
?the potential V in re@ons (1), (2) ~d 3) satis-

fying the boundary conditions V (x,a-d) = Vo, V1
(x,a) ?= O, E~(x,a-d) = Eti(x,a = Ofor lxla<in
region (1), V2(x,b) =Vo, V2(X,0) = O, E2x(x,b) =

E2X(X,0) = O for Ixl+f?in region (2) and V3(X,0)
=V3(x,a) = O, E3x(x,0) = E3x(x,a) = O for lxl>~

in region (3) is givmbfi

(y-a+d) -~ (Y-a)

for lxl~<, a-d~y~a ‘in region (l),

‘J2(X,Y) =? Bncosh~sin~+~ Y
n=l

for lxl~<, O~y~b in region (2), and

-plT 1x1/a

V3(%Y) =3 Cpe sin ~
p=l

for lxl~~, O~y~a in region (3)7.

2B. Continuity Equations

(1)

(2)

(3)

The triple set of coefficients Am, ~ and Cp
in (l), (2) and (3) can be determined by requiring
the potential and displacement to b continuous

- ~for the threeacross the common boundary at lxl-
regions. Using the orthogonal properties of the
trigonometric functions, we obtain from the contin-
uity of the potential from right to left at lxl=~

( v. (Sinqtia (.)’sinqfrp] ‘1

where a= b/a,~= d/a,~=$h andb=k/d.8’

%. (h) mustbe satisfied for all intager values of
q; it therefore represents an infinite set of equa-
tl.ons.

The continuity of the normal displacement
?from leftto right at lxl=~for regions (1) and 3)

(-)p p Cp e-pr%n~~
gives

2 &3
Aq=fi ~ @ csch q,$ ~ (5)=

q2 - P2F32

1

1

Similarly, we obtain for the displacement contin-
flty from region (2) to (3) at lxl=~

(6)

Substituting (5) end (6) into (~) for ~ and
B we obtain an infinite set of equations involv-
i~i only the coefficients of region (3); namely,

(7)

where

cm=Cme -Ml ‘/a, (7a)

1
and

The solutionof (7) and~e use of (~) and (6), the
potential, electrical field and displacement will
be completely detefined everywhere for the con-
figuration shown in Fig. 1.

2C. Electrostatic Capacity

The electrostatic capacity C per unit length
of the configuration shown in F~g. 1, immediately
follows from the application of (3ausst theorem.
Integrating the normal displacement on the outer
plates or the inner conductor, we can write for
the capacity per unit length

c = CP+AC , (8)

where f )

end

‘E3 s
Ac=~p,, PaPcp “

(8b)

The ~ and Cp coefficients in (8b) are given by
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(1%) and (7a), respectively. The C term in (8) is
the per uuit length parallel plate ~apacity that
would exist between the inner and outer conductors
if the fields in regions (1) and (2) were uniform.
TheAC term is therefore a correction to the Paral-
lel plate capacity required because of the distor-
tion of the uniform field produced by the finite
cross-section inner conductor and the penetration
of tie field into region (3).

2D. Characteristic Impedance

The configuration shown in Fig. 1 can be used
as a strip transmission line. For the case of e-
qual dielectric constants for the three regions

= ~ = &), a transverse electromagnetic

‘&l=&& 2wave (T ) can be propagated whose characteristic
impedance is given by

‘k =J~ (9)

wherepis the permeability and C is tk electro-
static capaci@ Wr unit length. Since for TEM
wav~ propagation

Lc=fe’ (lo)

the inductance per unit length L of the tranemi$-
sion line is also determinable from C.

For the case of unequal dieleotrie constants
as shown in Fig. 1., fulfillment of the continuity
of the electric and magnetic fields at the inter-
faces of the different dielectric regions requires
field components in the direction of propagation
in addition to the transverse field components.
The solution of Helmholtzls equation nmst be used
therefore to derive the field componentsin the di.f-
ferent regions instead of Laplacels equation as is
done in the electrostatic and TEM case. However,
the solution procedure for the electromagnetic field
aud Zk for the unequal dielectric constants case
parallels that given above for the electrostatic
case,sxcept that Zk would be determined by use of
Ohnrn~slaw or Poynting~s vector theorem. Conse-
quently, the expressions for C given below can be
used in combination with (9) to determine Zk only
for the case of equal dielectric constants in the
three regions.

3. Uniform Dielectric Symmetrical Case9

Equation (7) represents the culmination of
steps (1) and (2) in the series-matching procedure
of solving complex region potential problems. For
the uniform dielectric @l :~ =& =&) aymmetri-

$CSI. case (cL=~), we can simpl fy (?) to read

cm ‘%s- E 2 %nlpcp
n=l p=l

odd

where

kv

~=*wa’

(11)

(ha)

and

b S8 cc? coth nl’rinp sin nft’’sin p~ci
mnp *T

(n2 -m2ci?)(n2-p2&)

, (llb)

m and p odd only.

The ~ coefficients on the right side of (1.1) cor-
respond ta a linear potential distribution bet-
ween the inner conductor and outer platea at
[xl= 4. Consequently, the double summation terms
on the right side o? (11) are the corrections ix)
a linear potential required so that La.placels e-
quation and the boundary conditions are satisfied
by the potential functions (l), (2), and (3).

3A. Solution of Series-i%tching Equations

The particular form of (11) immedial,ely sug-
gests a solution by repeated substitution. Trarw-
forming the resultant repeated substitution solti-
tion so as to improve its rate cf convergence, we
obtain the following expression which is convey
gent for all values of aand~ and is the uniqus
solution of (11): I

(o) =
S:(@)

% -~’
and

(12)

+&)-s:(a) . ;(r)
●

n2 - ~2 q“

In (12), m is an odd integer only; the prims in
the Summation in (12c) indica%a that the q = n
term is omitted in the sum.

The auxiliary functions introduced in (12) are

and
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odd

where the superscript o indicates only the odd terms
are included in the summations. If the even terms
were also included in the above sums, the series
define the Hahn ~(a) and Urn(a) functions. ~~lOYll
The above functions can be deternd.ned from the Hahn
functions by

W(4 = Wrn(a) - ~ Wm(2a) , (15)

where W is either the S or U function.

Using (12) in combination wi.th (5) and (6) and
(1), (2), and (3),’ wecsn writa the potential md
fields throughout egLons (l), (2) and (3) of Fig.
1. Letting 1x1 ZJin these expressions, the eon-

tintity of the potential and the displacement a-
cross the common Ix I = %boundary can be readily
demonstrated.

3. Capacity and Characteristic Impedance

Using (8<) and (9), we have for the character-
istic impedance of the uniform dielectric (El =&2
.E3 = E ) synm&.ricd strip (b = d) transmission

line in Fig. 1.

‘k ‘G ~ (9)

C(%w=cp+ac=y+cs+cf , (16)

where

Cfl = 4% , (16a)

(16b )

The function in (16b ) is defined by the seties

(17)

odd

and is related to the Hahn So(a) by (1S) The cap-
acity of the strip line as indicated in (16) seu-
aratiw into three- lxmma3 the parallel plate” capic -
ity $, which would be produced by an uniform field
extending only over the inner conductor for lx 14< ,
and two correction terms. The first correction CS
to the parallel plate capacity is a function of the
inner conductor to outer plates spacing a and gives

the additional shred energy contribution of re-
gion (3) to the capaci~. The second correction
term Cf which is a function ef cg and the normal-
ized m.dth Y of the inner conductor subtracts from
the capacity

2
+ Cs and is the capacity correc-

tion required ecause of the uniform f’ield distor-
tion wroduced lw the finite width and corners of
the

LA.

ihner condu~ txx’.

b. Wumel’fcal Results

Capacity and Characteristic’ Mpe dance

The tabulation of Cs/& given in Table 1 for
0 z a(O.01) <0.50 is based on the. vslues of’ So(a)
gi%n in the %hinnery and Jamieson paper12. The
form of Cf is particularly adaptable ti automatic
computing machine calculation becayse of the iter-
ative process used in cabularing 7$n(@ Y ). The
normalized width of the inner conductor appears
in (16c ) and (12c ) in the denominator as the ar-
gument of the tanh function. Consequently, the
convergence of (16c ) and (12a) will be the slowest
for the case of 7’ = ~/b = O, the zero width stxip.
The capaci~ for the Y = O case, infinitely thin
strip perpendicular to the outer plates, can be
ed.culated by oonformsl mapping, howemn?, and is
given by

(18)

where K(k) is the conplete elliptic integral of tla
first kind of modulus

k . sj.n~a (18a)

~d K1 and k: are the complementary function and
modulus, re spec tivaly13. Using (16), we can write

1 C(d, o) - * Cs(d, 0) ,1C(CX90)=Egf (19)

where C(X O) and Cs(d, O) are given by (18) and
Table 1, reepec tively. From the numerical value
given by (19), the number of times (12c) must be
used (the upper I.ind.t in the r summation in (12a))
for a given accuracy in the value of ~ from (16c )
can be detemined. Using the same number of iter.
ations for other values of Y, the numerical accur-
ac y of Cf will be better than the upper bound de-
termined in the % = O case. For example, for
u = 0.2, we obtain from (19)

~ Cf(0.2, O) = -0.321. (20)

The value of I CS(O. 2, O) from (16c ) for various

values of the%pper limit T in the summation in
(12a) is as follows:

F
1
2

.
~03g.2 ,

0.302

o)

o.314
{ 0.318

The accuracy of (16c ) can also be checked for
the case of ~ =00, the infinitely A e stip, by

using the conf ormsl mapping soluti-onl f
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Using (1.6), we can write

For the tls 0.2 case again, we obtain from (22),
(21), and Table 1

1 c (0.2, m ) = 0.137-~ f (23)

The value of ~ Cf(O.2, cn) from (16c ) for various
values of the upper limit T in the summation in
(12a) is as follows:

.

Fig. 2 shows a plot of’~ Cf(cl, 7) for they ~ O
and Y =00 cases for o<d~o.g. The maximum in-
accuracy in the determination of the capacity and
characteristic impedance contributed by Cf (U, 7) can
be estimated from the above figure. The variation
of -. 1 Cf(O.2, <) as a funation of <was determined
by th~use of (1.6c) and is shown

2P:&;eyd;:;tislly tabulated below in Table 2.
the tabulation of the characteristic impedance for
the d= 0.2 case and various values of ~. For ~

> 1 (width of strip equal to or greater than twice
the inner to outer conductors spacing), the Cf term

:$Z:Y4,$2 ~ %1%’zzg?:
sdt,s in a maximum error f 6.s per cent in the VSL
ue of Zk(y= O case).

b. Electric Field at Corner of Inner Coyductor

IM.ff erentiating either (2) or (3) and using
(6) and (12 ), we obtain for the y component of the

electric field at IX I =eand O~-y ~b

(24)

Letting d+ O and ~+ m , we can use (24) to Ob-
tain the field at the corner across the gap betweeq
a right angle block and an infinite ground plane
(see Ilge 4). This problem is, however, a simple
conformal. mapping problem and can be solved direct-
ly. W. R. Smythe has used the fipli.cit expression
for the gap field to write the following Fourier ex-
pansion:

and I’(z) is the gamma function16. When m = 1,
0.006556 must be subtracted from (2~a) to o~tsin
the correct value for Au Using (24), we aan write
forcZ=Oand Yz~

Iterating (12c ) four times to calculate the val-
ues of ~m, the first twenty values of Am deterndmed
by (25a) and (26) were compared. The difference
between the two answers varied from one &it to
three units in the fourth’ decimal as m increased
to twen~.
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&
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a
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