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Abstract

An- example of the rigorous solution of a com-
plex region boundary value problem is presented.
The particular problem, the electrostatic capacity
and characteristic impedance of a strip transmis-
sion line, is solved exactly and numerical results
are given for a particular geometrical configura-
tion.

1. Introduction

A large class of important electromagnetic
boundary value problems requiring the solution of
Laplace's or Helmholtz' equation have boundaries
which cannot be completely described by constant
coordinate surfaces for the entire region under in=
vestigation. Consequently, the usual method of
solving these problems by selecting a coordinate
system which completely describes the boundaries
of the region by constant coordinate surfaces can-
not be used. Though this simple method of solution
is inapplicable, there exists a systematic proced-
ure for ireating complex region boundary value prob-
lems, the so-called series-matching method.

The ssries-matching procedure of solving com-
plex region boundary value problems can be divided
into the following four steps:

1. The complex region for which the solution
of Laplacets or Helmholtzts equations is desired is
dissected into a number of simpler regions whose
boundaries are constant coordinate surfaces. Eigen-
functions expansions of the fields in each of the
simpler regions can then be selected such that they
satisfy the boundary conditions peculiar to each of
the simpler regions.

2. Eguations relating the coefficients of the
elgenfunction expansions in each of the simpler re=
giong are obtained by imposing the continuity re-
quirements of the fields across common boundaries
of the simpler regions. Operations on these equa-
tiong results in the writing of an infinite set of
equations inwlving only the infinite set of eigen-
functions coefficients for one of the simpler re-
gions.

3., The infinite set of equations are then
solved with a demonstration given to show that the
solution obtained is bounded and the required sol-
ution.

L. Finally, to minimize the labor involved in
obtaining numerical results, such techniques as an-
alytical continuation and the use of Kummer's trans-
formation® are applied to simplify the solution ob-
tained.
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Examples of essentially the above propcedure
for the soclution of electrostatic problems are
given in the papers of Rigby and Knight3:L, Ap-
plication of the above method to problems involv-
ing the solution of Helmholtiz's equation have_been
given by Hahn, Whinnery, Jamieson and Robbins-.
However, in these application to cavity amd wave-
guide problems, the infinite set of equations ob-
tained were not solved but were approximated by
considering usually only the first four equations
and coefficients of the infinite set and justify
ing the omission of the rest of the equations by
the numerical smallness of the few calculated co-
efficlents. Hahn's contribution to the series
matching method, however, was in showing that a
congiderable simplification in the numerical hand-
ling of the infinite set of continuity equations
results if some newly defined auxiliary functions
are introduced. These auxiliary functions are
used in Kummer transformations of terms appearing
in the matching equations which are themselves
slowly convergent series.

In this paper, a simple electirostatic problem
will be solved using the series-matching method of
solution so as to completely demonstrate the use-
fulness of this method of solution and to clearly
illustrate the above mentioned solution procedure.
Since the particular problem considered is useful
in transmission line applications, the solution
will be carried to numerical completeness giving
the characteristic impedance of the configuration
when used as a strip transmission line.

2. Formulation of Problem

Let us consider the calculation of the elec-
trostatic capacity per unit length of an infinite
length rectangular bar placed between two infinite
extent ground planes. A plane cross-section per-
pendicular to the axis of the inner bar is shown
in Fig. 1. The imner bar at potential V = V, and
the infinite extent ground planes have infinite
conductivity. The regions above, below,and to the
right and left of the imner conductor have dielec-
tric constants 81’ £, and 63, respectively.

The boundaries of the inner conductor can not
be described by a single constant coordinate sur-
face. Following step 1 of the procedure outlined
above, the complex region between the irmer bar
and outer plates is dissected into four rectangu-
lar areas, where region (1) is bound by |x|< ¢,
a-d € y £ a, region (2) by |x} £ £, 0 €y £ b, and
region (3) by {x|= £, 0=y =a. The solution of
Laplace®'s equation in the three regions satisfying
the proper boundary conditions on the constant y
planes peculiar to each region can now be immed-
iately written.



2A, Solution of Laplace'!s Equation

The general solution of Laplace's equation for
the potential V in regions (1), (2) and (3) satis-
fying the boundary conditions Vq(x,a-d) = Vo5, Vq
(x,a) = 0, Ejx(x,a~d) = E]_x(x,a% = 0 for |x|=€in
region (1), Vo{x,b) = Vo, V2(x,0) = 0, Egx(x,b) =
Epy(x,0) = 0 for [x| £<€ in region (2) and V3(x,0)
=2 V3(x,a) = 0, E3x(x,0) = E3x(x,a) = O for |x| =£
in region (3) is given byd
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for |x|= €, 0€y=a in region (3)7.

2B. Continuity Equations

The triple set of coefficients Ay, By and Cj
in (1), (2) and (3) can be determined by requiring
the potential and displacement to bg continuous
across the common boundary at |x|={for the three
regions. Using the orthogonal properties of the
trigonometric functions, we obtain from the contin-
uity of the potential from right to left at |x|=4€
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where A= b/g,/j: d/a, -{:1‘-’/'1, and O =-€/d.8

Eq. (L) must be satisfied for all integer values of
q3 it therefore represents an infinite set of egua-
tions.

The continuity of the normal displacement D,(
from left to right at |x|=€for regions (1) and (3)
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Similarly, we obtain for the displacement contin-
uity from region (2) to (3) at |xi=¢€
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Substituting (5) and (6) into (L) for A, and
B,,, we obtain an infinite set of equations involv=-
ing only the coefficients of region (3); namely,
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The solution of (7) and the use of (5) and (6), the
potential, electrical field and displacement will
be completely determined everywhere for the con-
figuration shown in Fig. 1.

2C. Electrostatic Capacity

The electrostatic capacity C per unit length
of the configuration shown in Fig. 1, immediately
follows from the application of Gausst theorem.
Integrating the normal displacement on the outer
plates or the imner conductor, we can write for
the capacity per unit length

C =G, +AC , (8)
where
¢ = 4€, £ &, £ (8a)
and We, o
Ac:?p):::lpap"p . (8b)

©

The a, and ¢, coefficients in (8b) are given by



(To) and (7a), respectively. The C_ term in (8) is
the per unit length parallel plate gapacity that
would exist between the inner and outer conductors
if the fields in regions (1) and (2) were uniform.
The AC term is therefore a correction to the paral-
lel plate capacity required because of the distor-
tion of the uniform field produced by the finite
cross-section inner conductor and the penetration
of the field into region (3).

2D. Characteristic Impedance

The configuration shown in Fig. 1 can be used
as a strip transmission line. For the case of e~
qual dielectiric constants for the three regions
€ =&, = £2 = €), a transverse electromagnetic
wave (TEM) cén be propagated whose characteristic
impedance is given by

Zy = /‘J-é/c 3 (9)

where B is the permeability and C is the electro-
static capacity per unit length. Since for TEM
wave propagation

Ic = l‘e s (10)

the inductance per unit length L of the transmis-
sion line is also determinable from C,

For the case of unequal dielectric constants
as shown in Fig. 1., fulfiliment of the continuity
of the electric and magnetic fields at the inter
faces of the different dielectric regions requires
field components in the direction of propagation
in addition to the transverse field components.
The solution of Helmholtz's equation must be used
therefore to derive the field components in the dif-
ferent regions instead of Laplace's equation as is
done in the electrostatic and TEM case. However,
the solution procedure for the electromagnetic field
and Zy for the unequal dielectric constants case
parallels that given above for the electrostatic
case,except that Zy would be determined by use of
Ohm's law or Poynting's vector theorem. Conse-
quently, the expressions for C given below can be
used in combination with (9) to determine Zy only
for the case of equal dielectric constants in the
three reglons.

3. Uniform Dielectric Symmetrical Case9

Equation (7) represents the culmination of
steps (1) and (2) in the series-matching procedure

of solving complex region potential problems. For
the uniform dielectric €y =&, = €, = €) symmetri-
cal case (a =[3), we can simplify (?) to read
) 0
Cp = Ay - )N DI bmnp cp (11)
n=l p=l
odd
where
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*n ﬁm$2 o ?
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and

coth nwy fp_sin mld sin pe , (11b)
(0% -nef)(n?-p2)

b, s §

mnp

e
m and p odd only.

The coefficients on the right side of (11) cor-
respond to a linear potential distribution bet-
ween the inner conductor and outer plates at

1x|= Consequently, the double surmation terms
on the right side of (11) are the corrections to

a linear potentiel required so that Lsplace!s e-
quation and the boundary conditions are satisfied
by the potential functions (1), (2),and (3).

3A. Solution of Series-Matching Equations

The particular form of (11) immediately sug-
gests a solution by repeated subgtitution. Trans-
forming the resultant repeated substitution solu-
tion so as to improve its rate cf convergence, we
obtain the following expression which is conver
gent for all values of o and ¥ and is the unique
solution of (11):
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In (12), m is an odd integer only; the prime in
the summation in (12¢) indicates that the q = n
term is omitted in the sum.

The auxiliary functions introduced in (12) are

Q2.2
So(q) = X, Mo sin® L (p< a<1)

r=l 2_n2
e r{r2a2-m?)

(13)

and
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where the superscript o indicates only the odd terms

are included in the summations. If the even terms
were also included in the sbove sums, the series
define the Hahn Spy(a) and Up(a) functions.5»10,11
The above functions can be determined from the Hahn
functions by
- 1
W@ = Wp(@) = 2 ip(20) (15)

3

where W is either the S or U function.

Using (12) in combination with (5) and (6) and
(1), (2),and (3), we can write the potential and
fields throughout é‘egions (1), (2) and (3) of Fig.
1. Letting Ix| =€in these expressions, the con-
tinuity of the potential and the displacement a-
cross the common |x| '-eboundary can be readily
demonstrated.

3B. Capacity and Characteristic Impedance

Using (8) and (9), we have for the character=
istle impedance of the uniform dielectric (E.l =&
=€3 =&) symmetricel strip (b = d) transmission
line in Fig. 1.

Zy =\/P e, (9)
C(a,Y) =Cp ¢0C = Cp 4 Cg + Cp (16)
where
G = L 4 (16a)
Co/k 1% so(a) (16b)
and
ot =128 b Tp(e, ¥ ) - (16¢)
™2 n=l Un(a)
tanh nWY ¢ e
“2
Sp(a)
- n L ]
The function in (16b) is defined by the series
2
Z sin® rmwdl
5,(0 = = 23 an
odd

and is related to the Hahn So(d.) by (15) The cap-
acity of the strip line as indicated in (16) sep-

arates into three terms; the parallel plate capac-
ity Cp, which would be produced by an uniform field
extending only over the inner conductor for lx|<<€ ,
and two correction terms. The first correction Cg4

to the parallel plate capacity is a function of the
immer conductor ito outer plates spacing a and gives
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the additional stored energy contribution of re-
gion (3) to the capacity. The second correction
term C. which is a function of « and the normal-
ized width Y of the inner conductor subtracts from
the capacity # Cg and is the capacity correc-
tion required because of the uniform field distor-
tion produced by the finite width and corners of
the imner conductor.

L.

LA, Capacity and Characteristic Impedance

The tabulation of Cg/€ glven in Table 1 for
0 < a(0.01) < 0.50 18 based on the values of Sy(a)
given in the Whinnery and Jamieson paperl2., The
form of Oy is particularly adaptable to amtomatic
computing machine calculation because of the iter=
ative process used in calcularing fn(a,v ). The
normalized width of the inner conductor appears
in (16c) and (12c) in the denominator as the are
gument of the tanh function. Consequently, the
convergence of (16c) and (12a) will be the slowest
for the case of ¥ = = 0, the zero width strip.
The capacity for the ¥ & O case, infinitely thin
strip perpendicular to the outer plates, can be
calculated by conformal mspping, however, and is

given by
LK (k)

where K(k) is the complete elliptic integral of te
first kind of modulus

Numerical Results

%C(d’ 0) = (18)

k = gintla (18a)
and K!' and k! are the complementary function and
modulus, respectivelyl3. Using (16), we can write

0) - § Cglay 0) , (19
where C{a, 0) and C4{d, 0) are given by (18) and
Table 1, respectively. From the numerical value
glven by (19), the rmumber of times (12c) must be
used (the upper limit in the r summation in (12a))
for a given accuracy in the value of Cefrom (16c)
can be determined. Using the same mumber of iter-
ations for other values of Y, the numerical accur-
acy of Cp will be better than the upper bound de-
termined in the ¥'= O case. For example, for

a = 0,2, we obtain from (19)

% Cpldt, 0) -% (e,

1 -

g Cp(0.2, 0) = -0.321. (20)
The value of 1 Ce(0.2, 0) from (16c) for various
values of the®upper limit T in the summation in
(12a) is as followss

1
T - F Cr(0.2, 0)
l E . 63
2 0.302
3 0.314
L 0.318

The accuracy of (16éc) can also be checked for
the case of ¥ =00, the infinitely wige strip, by
using the conformal mapping solutiont



%-AC(d,m) =# {(%'&*‘ 1) Ing (.%3_4 1) (21)
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Using (16), we can write

2
£

For the L= 0.2 case again, We obtain from (22),
(21}, and Table 1

Ce(ay0) = %Ac(d,co) - %:- Cgla, 00 ) . (22)

(23)

The value of & Cr(0.2,00) from (1ée) for various
values of the upper limit ¥ in the summation in
(122) is as follows:

-% Cp(042, 0 ) = 0.137

1
= - 7 Cp(0.2,)
3 €036

kL 0.137

Fig. 2 shows a plot of -% Ce(a,Y) for theY =0
and Y =00 cases for 0 & d £ 0.5, The maximun in-
accuracy in the determination of the capacity and
charscteristic impedance contributed by Ce(a,7) can
be estimated from the above figure. The variation
of =1 Cp(0.2,7) as a function of 7 was determined
by thE use of (16¢) and is shoun ixif‘ig. 3 and par-
tiglly tabulated below in Table 2. Table 2 shows
the tabulation of the characteristic impedance for
the o = 0.2 case and various values of ¥. For ¥
> 1 (width of strip equal to or greater than twice
the inner to outer conducters spacing), the C¢ term
remains constant, Note, ihat for this particular
‘value of d, omitting the £ Cf term completely re-
sults in a maximum error Ef 6.5 per cent in the val-
ue of Zy(¥'= 0 case).

LB, Electric Field at Corner of Imner Conductor

Differentiating either (2) or (3) and using
(6) and (12), we obtain for the y component of the
electric field at 1x| =€and 04y £b

v < »)
B@y) - 1e S B (24)

" aE (&) oy
w0 (d b
tanh mTTY + S -..’L‘-.(.--)
72 m

Letting €20 and Y—> 0 , we can use (24) to ob=-
tain the field at the corner across the gap between
a right angle block and an infinite ground plane
(see Fig. 4). This problem is, however, a simple
conformal mapping problem and can be solved direct-
ly. W. R. Smythe has used the implicit expression
for the gap field to write the following Fourier ex-
pansion:
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(25)

Vo =]
Eyz*-—s l#nzlilAmcos$ .
where (25a)

= (- T(m + 0.1775 _ 0,031552
Ay = ()7 E).2998561-,-§m __.1;2_.5_]

and T'(z) is the gamma functionl®. When m = 1,
0.006556 must be subtracted from (25a) to ohtain
the correct value for Aj. Using (2L), we can write
for @ = 0 and ¥ €O

gz —mr  F(0,e0) . (26)
1? g Um 90 )
1l 4y e
€ m

Iterating (12c) four times to calculate the val-
ues of H, . the first twenty values of A determined
by (25a) and (26) were compared. The difference
between the two answers varied from one unit to

three units in the fourth decimal as m increased
to twenty.
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TABIE 1
1

Capacity Correction Term § Cg (a)

a % Cs(a)
0.01 12.632
0.02 10.866
0.03 9.833
0.0L 9.099
0.05 8.530
0.06 8.06L
0.07 7.669
0.08 7.328
0.09 7.025
0.10 6.75kL
0.11 6.508
0.12 6.283
0.13 6.077
0.1k 5.883
0.15 5.703
0.16 5.535
0.17 5.375
0.18 5.225
0.19 5.082
0.20 L.oLs
0.21 4.815
0.22 L.690
0.23 L.570
0.2k L.hsh
0.25 h.3k2

)

OO0OQOO0O O?O?O OOOPSD
. . . .
o OV~ nEwnE QN0 =3 O

nEEEE F’g‘-"l—*’;“ Ewwilwils W W W WD

[oNoNoRoRol [eNeoReoReNo]
o . . . .
OO~ N

TABLE 2

1 ¢ (a)

h0231
L.129
1.028
3.929
3.833

3.739
3.6L7
3.557
3.169
3.383

3.298
3.215
3.132
3.051
2,970

2.8%0
2,811
2.732
2.653
2.575

2.L196
2,417
2.337
2.255
2.171

Characteristic Impedance of a Strip Transmission Line

1

21—

a

t

o =b/a = 0.2

v
0 0 L.9Ls
0.05 0.20 L. 9LS
0.10 0.ko L.oL5
0.20 0.80 L.9kL5
0.50 2.00 L.9Ls
1.00 L.00 Ly 945

o0 @ k.95
* m = 1201

—
t

%%m %%mﬂ %%wan

-0.321
-0.2L0
~0.203
~0.169
~0.141
-0.137
«0.137
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1 c(0.2,7
6 c(0.2,7)

L.62}
h-905
S.142
5.576
6.80k
8.808

7,%(0.2,7)

81.53
76.86
73.32
67.61
55.41
h2.80



